Exercise 44

For the following exercises, solve the equations over the complex numbers.

$$
x^{2}-2 x+4=0
$$

Solution

The two terms with x, x^{2} and $2 x$, cannot be combined, so it's necessary to complete the square to solve for x. Recall the following algebraic identity.

$$
(x+B)^{2}=x^{2}+2 x B+B^{2}
$$

Notice that $2 B=-2$, which means $B=-1$ and $B^{2}=1$. Add and subtract 1 on the left side and apply the identity.

$$
\begin{gathered}
\left(x^{2}-2 x+1\right)+4-1=0 \\
(x+(-1))^{2}+3=0 \\
(x-1)^{2}+3=0
\end{gathered}
$$

Now that x appears in only one place, it can be solved for. Subtract 3 from both sides.

$$
(x-1)^{2}=-3
$$

Take the square root of both sides.

$$
\begin{aligned}
\sqrt{(x-1)^{2}} & =\sqrt{-3} \\
& =\sqrt{(-1) 3} \\
& =\sqrt{-1} \sqrt{3} \\
& =i \sqrt{3}
\end{aligned}
$$

Since there's an even power under an even root, and the result is to an odd power, an absolute value sign is needed around $x-1$.

$$
|x-1|=i \sqrt{3}
$$

Remove the absolute value sign by placing \pm on the right side.

$$
x-1= \pm i \sqrt{3}
$$

Add 1 to both sides.

$$
x=1 \pm i \sqrt{3}
$$

Therefore,

$$
x=\{1-i \sqrt{3}, 1+i \sqrt{3}\} .
$$

